

Engineering, Test & Technology Boeing Research & Technology

Material characterization of composite materials with the help of multi scale methods: an efficient and highly precise method for industrial application

Jens Bold - Boeing Research & Technology – Europe Frank Ehrhart - Altair Engineering GmbH Erazem Mirtic - Leichtbau-Zentrum Sachsen GmbH

Engineering, Test & Technology Boeing Research & Technology

Boeing in Europe

Quick Overview

Copyright © 2019 Boeing. All rights reserved.

Boeing Research & Technology Europe

Engineering, Test & Technology Boeing Research & Technology

Project Partners

Quick Overview

Project Partners

Leichtbau-Zentrum Sachen

- Material test evaluation
- Analytical calculation methods
- Numerical simulations with Abaqus

ALTAIR Engineering

- Advanced numerical material methods
- Numerical simulations with OptiStruct/Radios

Boeing Research & Technology

- Material & failure models
- Analytical calculation methods
- Numerical simulations with MSC Nastran

Engineering, Test & Technology Boeing Research & Technology

Material Test Data

Ply based

Material Behaviour, Uniaxial Tests

Tension

ASTM D3039

Standard Test Method for Tensile Materials

Compression

ASTM D 6641

Shear

ASTM D 5379

Standard Test Method for Compressive Standard Test Method for Shear Properties of Polymer Matrix Composite Properties of Polymer Matrix Composite Properties of Composite Materials by Materials Using a Combined Loading the V-Notched Beam Method Compression (CLC) Test Fixture

2x tension, 2x compression, 1x shear, 8 specimen, 3 temperatures, 3 batches 360 test results for one material

Nonlinearity on macro scale

Tension, Compression & Shear of UD and woven ply

- UD ply: pronounced material asymmetry with progressive fiber tensile response
- BD ply: showing effects of internal reinforcement architecture in stiffness and strength
 - Comparing UD and woven response
 - Comparing Warp and Fill response

Nonlinearity on macro scale

Summary: Data for macro / micro mechanical models

Engineering, Test & Technology Boeing Research & Technology

Examples of Numerical Simulations

Ply based CUNTZE-BOLD Material & Failure Model

CUNTZE-BOLD material & failure model

Pre-Failure: BOLD material model

- Formulation to describe stress-strain material behaviour with a single equation based on physical effects
- No additional test

Failure: CUNTZE failure criteria

- State-of-the-art failure prediction based on failure modes and valid for unidirectional and woven materials
- No additional tests

Post-Failure: BOLD material model

- Proper description after ply failure in laminate
- No additional tests

Woven Material: HT-Fibre 2x2 Twill and Epoxy Resin

<u>Summary</u>: 2D (\diamond) and 3D (\triangle) elements show recommended behaviour

Example II: Single Element with single material under multi-axial loading

Layup

Model Description

- 3D Hex8 Elements One Element per Ply
- One Layer per Element
- **Displacement Loading**
- Tension
- Compression

Displacement applied via Rigid Body Element (RBE) with only coupling in load direction

Total Damage

Total Damage

Window 75mm x 125mm

Impact: ANALYSIS=NLTRANS

Compression: ANALYSIS=NLSTAT

Impact: ANALYSIS=NLTRANS

Compression: ANALYSIS=NLSTAT

Impact: ANALYSIS=NLTRANS

Compression: ANALYSIS=NLSTAT

Example IV: Compression after Impact Model Force-Displacement Diagram: Test vs. Numerical Simulation

Good correlation between test and numerical simulation **BUT: What about deviations in fibre volume content?**

Engineering, Test & Technology Boeing Research & Technology

Industrial Use of Multiscale Designer

Altair

Step 1:

- Inverse Characterization
 - From homogenized ply and fiber behavior to matrix behavior with known fiber volume fraction

- All test results can be used
 - Tension
 - Compression
 - shear

Parametric Unit Cell Library

Determining Homogenized Engineering Constant

 The <u>21 independent engineering constants</u> that define the anisotropic stiffness matrix are determined by placing a specimen of material under <u>6 different</u> <u>strain boundary conditions</u> within the linear elastic regime.

 Boundary 	conditions
------------------------------	------------

BC1	$\varepsilon_1 = 1$	$\varepsilon_2 = \varepsilon_3 = \gamma_{12} = \gamma_{23} = \gamma_{13} = 0$
BC2	$\varepsilon_2 = 1$	$\varepsilon_1 = \varepsilon_3 = \gamma_{12} = \gamma_{23} = \gamma_{13} = 0$

BC3 $\varepsilon_3 = 1$	$\varepsilon_1 = \varepsilon_2 = \gamma_{12} = \gamma_{23} = \gamma_{13} =$
BC3 $\varepsilon_3 = 1$	$\varepsilon_1 = \varepsilon_2 = \gamma_{12} = \gamma_{23} = \gamma_{13} =$

- BC4 $\gamma_{12} = 1$ $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \gamma_{23} = \gamma_{13} = 0$
- BC5 $\gamma_{23} = 1$ $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \gamma_{12} = \gamma_{13} = 0$
- BC6 $\gamma_{13} = 1$ $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \gamma_{12} = \gamma_{23} = 0$

 $C_{11} = \overline{\sigma}_1, C_{21} = \overline{\sigma}_2, C_{31} = \overline{\sigma}_3, C_{41} = \overline{\tau}_{12}, C_{51} = \overline{\tau}_{23}, C_{61} = \overline{\tau}_{13}, C_{12} = \overline{\sigma}_1, C_{22} = \overline{\sigma}_3, C_{42} = \overline{\tau}_{12}, C_{52} = \overline{\tau}_{23}, C_{62} = \overline{\tau}_{13}, C_{14} = \overline{\sigma}_1, C_{24} = \overline{\sigma}_2, C_{34} = \overline{\sigma}_3, C_{44} = \overline{\tau}_{12}, C_{54} = \overline{\tau}_{23}, C_{64} = \overline{\tau}_{13}, C_{14} = \overline{\sigma}_{14}, C_{14} =$

Multiscale Designer: Comparison Test vs. Multiscale Designer

<u>Conclusion:</u> modification of residual stiffness in shear in CUNTZE-BOLD material & failure model

Multiscale Designer: Comparison Test vs. Multiscale Designer

<u>Conclusion:</u> modification of residual stiffness in shear in CUNTZE-BOLD material & failure model

Step 2:

 Forward Characterization: From matrix and fiber behavior to homogenized ply behavior with <u>different fiber volume fraction</u> (±5%)

Multiscale Designer: Comparison of different fiber volume fraction

Summary: changes in material behaviour can be evaluated

Engineering, Test & Technology Boeing Research & Technology

Application of Multiscale Designer Results

Numerical Simulation with CUNTZE-BOLD Material & Failure Model CUNTZE-BOLD material & failure model with different fiber volume fractions

Summary: changes in material behaviour can be evaluated

Example II: Single Element with single material under multi-axial loading

Example II: Single Element with single material under multi-axial loading

Variation in Fiber Volume Fraction

Method 1

Contant fiber volume

Changed total dimension

Method 2

Changed fiber volume

Constant total dimensions

Copyright © 2019 Boeing. All rights reserved.

Example III: Layup with different materials under combined loading Changed total dimensions

Example III: Layup with different materials under combined loading Changed total dimensions

Engineering, Test & Technology Boeing Research & Technology

Summary & Conclusion

Summary & Conclusion

PAST

From hand evaluation to automated evaluation

From turned layup to real biaxiale loading

From single fiber volume to stochastic distribution

From hand evaluation to automated evaluation

FUTURE

Summary & Conclusion

Different approaches can be combined to predict the material behavior

- Ply based methods based on CUNTZE-BOLD
- Micro scale methods based on Multiscale Designer

Advantages for Composite Simulations in Industrial Applications

- Prediction of deviations
- Highly efficient
- Fast

Conclusion

- Still some challenges to describe the material behavior in depth
- Engineering judgement of experienced experts are necessary
- Composite material characterization with the help of multi scale methods is possible when combining different methods

Thank you. Questions?

